The value of $\tan 81^{\circ}-\tan 63^{\circ}-\tan 27^{\circ}+\tan 9^{\circ}$ is
$0$
$2$
$3$
$4$
If $\sin A = n\sin B,$ then $\frac{{n - 1}}{{n + 1}}\tan \,\frac{{A + B}}{2} = $
If $\alpha + \beta - \gamma = \pi ,$ then ${\sin ^2}\alpha + {\sin ^2}\beta - {\sin ^2}\gamma = $
$\tan \alpha + 2\tan 2\alpha + 4\tan 4\alpha + 8\cot \,8\alpha = $
$\tan 3A - \tan 2A - \tan A = $
The expression $[1 - sin (3\pi - \alpha ) + cos (3\pi + \alpha )]$ $\left[ {1\,\, - \,\,\sin \,\left( {\frac{{3\,\pi }}{2}\,\, - \,\,\alpha } \right)\,\, + \,\,\cos \,\left( {\frac{{5\,\pi }}{2}\,\, - \,\,\alpha } \right)} \right]$ when simplified reduces to :