If ${\cos ^6}\alpha + {\sin ^6}\alpha + K\,{\sin ^2}2\alpha = 1,$ then $K =$
$\frac{4}{3}$
$\frac{3}{4}$
$\frac{1}{2}$
$2$
If $A + B + C = {180^o},$ then $\frac{{\tan A + \tan B + \tan C}}{{\tan A\,.\,\tan B\,.\,\tan C}} = $
$\sqrt {\frac{{1 - \sin A}}{{1 + \sin A}}} = $
$\tan 3A - \tan 2A - \tan A = $
Prove that $\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x=1$
If $\sin \theta + \cos \theta = x,$ then ${\sin ^6}\theta + {\cos ^6}\theta = \frac{1}{4}[4 - 3{({x^2} - 1)^2}]$ for