3.Trigonometrical Ratios, Functions and Identities
easy

If $\tan \beta = \cos \theta \tan \alpha ,$ then ${\tan ^2}\frac{\theta }{2} = $

A

$\frac{{\sin (\alpha + \beta )}}{{\sin (\alpha - \beta )}}$

B

$\frac{{\cos (\alpha - \beta )}}{{\cos (\alpha + \beta )}}$

C

$\frac{{\sin (\alpha - \beta )}}{{\sin (\alpha + \beta )}}$

D

$\frac{{\cos (\alpha + \beta )}}{{\cos (\alpha - \beta )}}$

Solution

(c) ${\tan ^2}\frac{\theta }{2} = \frac{{1 – \cos \theta }}{{1 + \cos \theta }} $

$= \frac{{\tan \alpha – \tan \beta }}{{\tan \alpha + \tan \beta }} $

$= \frac{{\sin (\alpha – \beta )}}{{\sin (\alpha + \beta )}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.