The value of $\frac{1}{4} \,\,tan \frac{\pi}{8} +\frac{1}{8} \,\,tan \frac{\pi}{16}+\frac{1}{16} \,\,tan \frac{\pi}{32}+.\,.\,.\,\infty $ terms is equal to-
$\frac{5}{\pi}-\frac{1}{2}$
$\frac{3}{\pi}+\frac{1}{2}$
$\frac{2}{\pi}-\frac{1}{2}$
$\frac{4}{\pi}-\frac{1}{4}$
If $\tan A = \frac{{1 - \cos B}}{{\sin B}},$ find $\tan 2A$ in terms of $\tan B$ and show that
The exact value of $cos^273^o + cos^247^o + (cos73^o . cos47^o )$ is
If $\cos A = \frac{3}{4}$, then $32\sin \frac{A}{2}\cos \frac{5}{2}A = $
Given that $\cos \left( {\frac{{\alpha - \beta }}{2}} \right) = 2\cos \left( {\frac{{\alpha + B}}{2}} \right)$, then $\tan \frac{\alpha }{2}\tan \frac{\beta }{2} $ is equal to
${\rm{cosec }}A - 2\cot 2A\cos A = $