${\log _3}\,4{\log _4}\,5{\log _5}\,6{\log _6}\,7{\log _7}\,8{\log _8}\,9= . .$ . .
$1$
$2$
$3$
$4$
${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.
જો ${\log _{1/\sqrt 2 }}\sin x > 0,x \in [0,\,\,4\pi ],$ તો $ x$ ની કેટલી કિમતો મળે કે જે ${\pi \over 4}$ નો ગુણિત છે.
જો ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ હોય તો
જો ${a^x} = b,{b^y} = c,{c^z} = a,$ તો $xyz = . . . .$
જો ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0$ તો $x = . . . .$