- Home
- Standard 11
- Mathematics
Basic of Logarithms
hard
જો $x = {\log _5}(1000)$ અને $y = {\log _7}(2058)$ તો
A
$x > y$
B
$x < y$
C
$x = y$
D
એકપણ નહી.
Solution
(a) $x = {\log _5}1000 = 3{\log _5}10 = 3 + 3{\log _5}2 = 3 + {\log _5}8$
$y = {\log _7}2058 = {\log _7}({7^3}.6) = 3 + {\log _7}6$
As ${\log _5}8 > {\log _5}5$ i.e., ${\log _5}8 > 1$. $x > 4$
And ${\log _7}6 < {\log _7}7$ i.e., ${\log _7}6 < 1$
$\therefore y < 4$;
$\therefore x > y$.
Standard 11
Mathematics