The value of $\sqrt {[12\sqrt 5 + 2\sqrt {(55)} ]} $ is
${5^{1/2}}[\sqrt {(11)} + 1]$
${5^{1/2}}[\sqrt {(11)} - 1]$
${5^{1/4}}[\sqrt {(11)} + 1]$
${5^{1/4}}[\sqrt {(11)} - 1]$
Let ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, then $A+B+C+D= . . .$
$\sqrt {(3 + \sqrt 5 )} - \sqrt {(2 + \sqrt 3 )} = $
Solution of the equation ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution
If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=
Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are