The value of $\left| {\,\begin{array}{*{20}{c}}{{5^2}}&{{5^3}}&{{5^4}}\\{{5^3}}&{{5^4}}&{{5^5}}\\{{5^4}}&{{5^5}}&{{5^7}}\end{array}\,} \right|$ is
${5^2}$
$0$
${5^{13}}$
${5^9}$
If $a, b, c$ are all different from zero and $\left| {\begin{array}{*{20}{c}} {1 + a}&1&1\\ 1&{1 + b}&1\\ 1&1&{1 + c} \end{array}} \right| = 0$ , then the value of $a^{-1} + b^{-1} + c^{-1}$ is
If $f(x) = \left| {\begin{array}{*{20}{c}}1&x&{x + 1}\\{2x}&{x(x - 1)}&{(x + 1)x}\\{3x(x - 1)}&{x(x - 1)(x - 2)}&{(x + 1)x(x - 1)}\end{array}} \right|$ then $f(100)$ is equal to
By using properties of determinants, show that:
$\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}$