The value of the determinant $\left| {\,\begin{array}{*{20}{c}}4&{ - 6}&1\\{ - 1}&{ - 1}&1\\{ - 4}&{11}&{ - 1\,}\end{array}} \right|$is

  • A

    $-75$

  • B

    $25$

  • C

    $0$

  • D

    $-25$

Similar Questions

If the system of equations $ax + y + z = 0$, $x + by + z = 0$ and $x + y + cz = 0 $, where $a,b,c \ne 1,$ has a non trivial solution, then the value of $\frac{1}{{1 - a}} + \frac{1}{{1 - b}} + \frac{1}{{1 - c}}$is

The value of $\theta$ lying between $\theta = 0$ and $\theta = \pi /2$ and satisfying the equation : $\left| {\,\begin{array}{*{20}{c}} {1\,\, + \,\,{{\sin }^2}\,\theta }&{{{\cos }^2}\,\theta }&{4\,\sin \,4\,\theta }\\ {{{\sin }^2}\,\theta }&{1\,\, + \,\,{{\cos }^2}\,\theta }&{4\,\sin \,4\,\theta }\\ {{{\sin }^2}\,\theta }&{{{\cos }^2}\,\theta }&{1\,\, + \,\,4\,\sin \,4\,\theta } \end{array}\,} \right|$ $= 0$ are :

$\left| {\,\begin{array}{*{20}{c}}{{b^2} - ab}&{b - c}&{bc - ac}\\{ab - {a^2}}&{a - b}&{{b^2} - ab}\\{bc - ac}&{c - a}&{ab - {a^2}}\end{array}\,} \right| = $

Suppose $a_1, a_2, .......$ real numbers, with $a_1 \ne 0$. If $a_1, a_2, a_3, ..........$ are in $A.P$. then

Evaluate $\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \operatorname{csin} \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$