- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
hard
If $\left| {\,\begin{array}{*{20}{c}}{1 + ax}&{1 + bx}&{1 + cx}\\{1 + {a_1}x}&{1 + {b_1}x}&{1 + {c_1}x}\\{1 + {a_2}x}&{1 + {b_2}x}&{1 + {c_2}x}\end{array}\,} \right|,$ $ = {A_0} + {A_1}x + {A_2}{x^2} + {A_3}{x^3}$ then ${A_1}$ is equal to
A
$abc$
B
$0$
C
$1$
D
None of these
Solution
(b) $(1 + ax)\,[(1 + {b_1}x)\,(1 + {c_2}x) – (1 + {b_2}x)\,(1 + {c_1}x)]$
+ $(1 + bx)[(1 + {c_1}x)(1 + {a_2}x) – (1 + {a_1}x)\,(1 + {c_2}x)]$
+ $(1 + cx)\,[(1 + {a_1}x)\,(1 + {b_2}x) – (1 + {b_1}x)\,(1 + {a_2}x)]$
= ${A_0} + {A_1}x + {A_2}{x^2} + {A_3}{x^3}$
After solving, the coefficient of $x$ is $0.$
Standard 12
Mathematics
Similar Questions
normal