3 and 4 .Determinants and Matrices
normal

$\left| {\,\begin{array}{*{20}{c}}{41}&{42}&{43}\\{44}&{45}&{46}\\{47}&{48}&{49}\end{array}\,} \right| = $

A

$2$

B

$4$

C

$0$

D

$1$

Solution

(c)Given, $\Delta = \left| {\,\begin{array}{*{20}{c}}{41}&{42}&{43}\\{44}&{45}&{46}\\{47}&{48}&{49}\end{array}\,} \right|.$
Applying ${C_2} \to {C_2} – {C_1},\,{C_3} \to {C_3} – {C_2}$ we get $\Delta = \left| {\,\begin{array}{*{20}{c}}{41}&1&1\\{44}&1&1\\{47}&1&1\end{array}\,} \right|$. Since two columns (${C_2}$ and ${C_3}$) are identical, therefore $\Delta = 0$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.