The value of $x$ that satisfies the relation $x = 1 - x + x^2 - x^3 + x^4 - x^5 + ......... \infty$
$2\, cos36^°$
$2 \,cos144^°$
$2\, sin18^°$
none
${\sin ^4}\frac{\pi }{4} + {\sin ^4}\frac{{3\pi }}{8} + {\sin ^4}\frac{{5\pi }}{8} + {\sin ^4}\frac{{7\pi }}{8} = $
If $\tan \alpha = \frac{1}{7}$ and $\sin \beta = \frac{1}{{\sqrt {10} }}\left( {0 < \alpha ,\,\beta < \frac{\pi }{2}} \right)$, then $2\beta $ is equal to
$\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = $
Prove that: $\cos 6 x=32 x \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$
$\frac{{\sin 3A - \cos \left( {\frac{\pi }{2} - A} \right)}}{{\cos A + \cos (\pi + 3A)}} = $