If $A + B + C = \pi ,$ then $\cos \,\,2A + \cos \,\,2B + \cos \,\,2C = $
$1 + 4\,\cos A\,\cos B\,\sin C$
$ - 1 + 4\,\sin A\,\sin B\,\cos C$
$ - 1 - 4\,\cos A\,\,\cos B\,\,\cos C$
None of these
$\tan \frac{A}{2}$ is equal to
The value of $cot\, x + cot\, (60^o + x) + cot\, (120^o + x)$ is equal to :
$\frac{{\sin \theta + \sin 2\theta }}{{1 + \cos \theta + \cos 2\theta }} = $
If $a\tan \theta = b$, then $a\cos 2\theta + b\sin 2\theta = $
Prove that: $\cos 4 x=1-8 \sin ^{2} x \cos ^{2} x$