If $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta $, then the general value of $\theta $ is
$n\pi $
$\frac{{n\pi }}{6}$
$n\pi - \frac{\pi }{4} \pm \alpha $
$\frac{{n\pi }}{2}$
The general solution of the trigonometric equation $tan\, x + tan \,2x + tan\, 3x = tan \,x · tan\, 2x · tan \,3x$ is
The solution of $\frac{1}{2} +cosx + cos2x + cos3x + cos4x = 0$ is
If $\cos \,\alpha + \cos \,\beta = \frac{3}{2}$ and $\sin \,\alpha + \sin \,\beta = \frac{1}{2}$ and $\theta $ is the the arithmetic mean of $\alpha $ and $\beta $ , then $\sin \,2\theta + \cos \,2\theta $ is equal to
General solution of $\tan 5\theta = \cot 2\theta $ is $($ where $n \in Z )$
Number of solutions of equation $secx = 1 + cosx + cos^2x + ........ \infty$ in $x \in [-50 \pi, 50 \pi]$ is -