- Home
- Standard 11
- Mathematics
If $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta $, then the general value of $\theta $ is
$n\pi $
$\frac{{n\pi }}{6}$
$n\pi - \frac{\pi }{4} \pm \alpha $
$\frac{{n\pi }}{2}$
Solution
(b) $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta $
$\tan 6\theta = \frac{{\tan \theta + \tan 2\theta + \tan 3\theta – \tan \theta \tan 2\theta \tan 3\theta }}{{1 – \sum \tan \theta \tan 2\theta }}$
$= 0, $ (from the given condition)
$ \Rightarrow $ $6\theta = n\pi \Rightarrow \theta = n\pi /6$.
Trick : In such type of problems, the general value of $\theta $ is given by $\frac{{n\pi }}{{{\rm{sum \,of\, number\, of\, }}\theta }}$.
So the general value of $\theta $ is $\frac{{n\pi }}{{1 + 2 + 3}} = \frac{{n\pi }}{6}$.