- Home
- Standard 11
- Mathematics
13.Statistics
medium
The variance of $10$ observations is $16$. If each observation is doubled, then standard deviation of new data will be -
A
$16$
B
$32$
C
$8$
D
$4$
Solution
$\operatorname{Var}\left(a x_{i}+b\right)=a^{2} \operatorname{var}\left(x_{i}\right)$
Variance on doubling each observation
$=2^{2} \times 16=64$
Std. deviation $=\sqrt{\operatorname{var}}=8$
Standard 11
Mathematics
Similar Questions
For the frequency distribution :
Variate $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
Frequency $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
where $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ and
$\sum \limits_{i=1}^{15} f_{i}>0,$ the standard deviation cannot be
Let $\mu$ be the mean and $\sigma$ be the standard deviation of the distribution
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
where $\sum f_i=62$. if $[x]$ denotes the greatest integer $\leq x$, then $\left[\mu^2+\sigma^2\right]$ is equal $………$.