What vector must be added to the two vectors $\hat i - 2\hat j + 2\hat k$ and $2\hat i + \hat j - \hat k,$ so that the resultant may be a unit vector along $X-$axis

  • A

    $2\hat i + \hat j - \hat k$

  • B

    $ - 2\hat i + \hat j - \hat k$

  • C

    $2\hat i - \hat j + \hat k$

  • D

    $ - 2\hat i - \hat j - \hat k$

Similar Questions

A body is at rest under the action of three forces, two of which are ${\vec F_1} = 4\hat i,\,{\vec F_2} = 6\hat j,$ the third force is

The sum of three forces ${\vec F_1} = 100\,N,{\vec F_2} = 80\,N$ and ${\vec F_3} = 60\,N$ acting on a particle is zero. The angle between $\vec F_1$ and $\vec F_2$ is nearly .......... $^o$

Two forces are such that the sum of their magnitudes is $18\; N$ and their resultant is $12\; N$ which is perpendicular to the smaller force. Then the magnitudes of the forces are

  • [AIEEE 2002]

With respect to a rectangular cartesian coordinate system, three vectors are expressed as
$\vec a = 4\hat i - \hat j$, $\vec b = - 3\hat i + 2\hat j$ and $\vec c = - \hat k$ 
where $\hat i,\,\hat j,\,\hat k$ are unit vectors, along the $X, Y $ and $Z-$axis respectively. The unit vectors $\hat r$ along the direction of sum of these vector is

The ratio of maximum and minimum magnitudes of the resultant of two vector $\vec a$ and $\vec b$ is $3 : 1$. Now $| \vec a |$  is equal to