Gujarati
Hindi
2.Motion in Straight Line
hard

The velocity $u$ and displacement $r$ of a body are related as $u^2 = kr$, where $k$ is a constant. What will be the velocity after $1\, second$ ? (Given that the displacement is zero at $t = 0$)

A

$\sqrt {kr} $

B

$k{r^{3/2}}$

C

$\frac{k}{2}\,{r^o}$

D

Data is not sufficient

Solution

$u^{2}=\mathrm{kr} \quad$ or $\quad u=\sqrt{\mathrm{kr}}$
$\frac{\mathrm{du}}{\mathrm{dt}}=\sqrt{\mathrm{k}} \frac{1}{2} \mathrm{r}^{-1 / 2} \frac{\mathrm{dr}}{\mathrm{dt}}=\sqrt{\mathrm{k}} \frac{1}{2} \mathrm{r}^{-1 / 2} \cdot \mathrm{u}$

$=\sqrt{\mathrm{k}} \frac{1}{2} \mathrm{r}^{-1 / 2} \cdot \sqrt{\mathrm{k} \mathrm{r}}^{1 / 2}=\frac{\mathrm{k}}{2} \mathrm{r}^{0}$

Velocity after $1\, sec$ $=0+\frac{\mathrm{k}}{2} \mathrm{r}^{0} \times 1=\frac{\mathrm{k}}{2} \mathrm{r}^{0}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.