The Young's modulus of a rubber string $8\, cm$ long and density $1.5\,kg/{m^3}$ is $5 \times {10^8}\,N/{m^2}$, is suspended on the ceiling in a room. The increase in length due to its own weight will be
$9.6 \times {10^{ - 5}}\,m$
$9.6 \times {10^{ - 11}}\,m$
$9.6 \times {10^{ - 3}}\,m$
$9.6\, m$
A uniform heavy rod of weight $10\, {kg} {ms}^{-2}$, crosssectional area $100\, {cm}^{2}$ and length $20\, {cm}$ is hanging from a fixed support. Young modulus of the material of the rod is $2 \times 10^{11} \,{Nm}^{-2}$. Neglecting the lateral contraction, find the elongation of rod due to its own weight. (In $\times 10^{-10} {m}$)
A rubber cord $10\, m$ long is suspended vertically. How much does it stretch under its own weight $($Density of rubber is $1500\, kg/m^3, Y = 5×10^8 N/m^2, g = 10 m/s^2$$)$
The edge of an aluminium cube is $10\; cm$ long. One face of the cube is firmly fixed to a vertical wall. A mass of $100 \;kg$ is then attached to the opposite face of the cube. The shear modulus of aluminium is $25\; GPa$. What is the vertical deflection of this face?
When a certain weight is suspended from a long uniform wire, its length increases by one $cm$. If the same weight is suspended from another wire of the same material and length but having a diameter half of the first one, the increase in length will be ......... $cm$