The Young's modulus of a wire is $y$. If the energy per unit volume is $E$, then the strain will be

  • A

    $\sqrt {\frac{{2E}}{y}} $

  • B

    $E\sqrt {2y} $

  • C

    $Ey$

  • D

    $\frac{E}{y}$

Similar Questions

A wire of length $L$ and radius $r$ is rigidly fixed at one end. On stretching the other end of the wire with a force $F$, the increase in its length is $l$. If another wire of same material but of length $2L$ and radius $2r$ is stretched with a force of $2F$, the increase in its length will be

  • [AIIMS 1980]

In a human pyramid in a circus, the entire weight of the balanced group is supported by the legs of a performer who is lying on his back. The combined mass of all the persons performing the act, and the tables, plaques etc. Involved is $280\; kg$. The mass of the performer lying on his back at the bottom of the pyramid is $60\; kg$. Each thighbone (femur) of this performer has a length of $50\; cm$ and an effective radius of $2.0\; cm$. Determine the amount by which each thighbone gets compressed under the extra load.

A boy’s catapult is made of rubber cord which is $42\, cm$ long, with $6\, mm$ diameter of cross -section and of negligible mass. The boy keeps a stone weighing $0.02\, kg$ on it and stretches the cord by $20\, cm$ by applying a constant force. When released, the stone flies off with a velocity of $20\, ms^{-1}$. Neglect the change in the area of cross section of the cord while stretched. The Young’s modulus of rubber is closest to

  • [JEE MAIN 2019]

Two persons pull a wire towards themselves. Each person exerts a force of $200 \mathrm{~N}$ on the wire. Young's modulus of the material of wire is $1 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}$. Original length of the wire is $2 \mathrm{~m}$ and the area of cross section is $2 \mathrm{~cm}^2$. The wire will extend in length by . . . . . . . .$\mu \mathrm{m}$.

  • [JEE MAIN 2024]

An equilateral triangle $ABC$ is formed by two copper rods $AB$ and $BC$ and one is aluminium rod which heated in such a way that temperature of each rod increases by $\Delta T$. Find change in the angle $\angle {ABC}$. (Coefficient of linear expansion for copper is $\alpha _1$ and for aluminium is $\alpha _2$).