- Home
- Standard 11
- Mathematics
1.Set Theory
easy
There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to
Chemical $C_{1}$ or chemical $C_{2}$
A
$140$
B
$140$
C
$140$
D
$140$
Solution
Let $U$ denote the universal set consisting of individuals suffering from the skin disorder, $A$ denote the set of individuals exposed to the chemical $C_{1}$ and $B$ denote the set of individuals exposed to the chemical $C_{2}$
Here $\quad n( U )=200, n( A )=120, n( B )=50$ and $n( A \cap B )=30$
The number of individuals exposed either to chemical $C_{1}$ or to chemical $C_{2}$, i.e., $n( A \cup B )=n( A )+n( B )-n( A \cap B )$
$=120+50-30=140$
Standard 11
Mathematics