ચામડીની વ્યાધિવાળી $200$ વ્યક્તિઓ છે. $120$ વ્યક્તિઓને રસાયણ $C _{1}$ અને $50$ વ્યક્તિઓને રસાયણ $C _{2}$ ની અસર માલૂમ પડી અને $30$ ને બંને રસાયણો $C _{1}$ અને $C _{2}$ ની અસર માલૂમ પડી. રસાયણ $C_{1}$ અથવા રસાયણ $C _{2}$ ની અસર માલૂમ પડી હોય તેવી વ્યક્તિઓની સંખ્યા શોધો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $U$ denote the universal set consisting of individuals suffering from the skin disorder, $A$ denote the set of individuals exposed to the chemical $C_{1}$ and $B$ denote the set of individuals exposed to the chemical $C_{2}$

Here $\quad n( U )=200, n( A )=120, n( B )=50$ and $n( A \cap B )=30$

The number of individuals exposed either to chemical $C_{1}$ or to chemical $C_{2}$, i.e., $n( A \cup B )=n( A )+n( B )-n( A \cap B )$

$=120+50-30=140$

Similar Questions

$500$ મોટરમાલિક વિષયક સંશોધનમાં માલૂમ પડ્યું કે $\mathrm{A}$ પ્રકારની મોટરના માલિકોની સંખ્યા $400$ અને $\mathrm{B}$ પ્રકારની મોટરના માલિકોની સંખ્યા $200$ છે. જ્યારે $50$ મોટર માલિકો $\mathrm{A}$ અને $\mathrm{B}$ બંને પ્રકારની મોટર ધરાવે છે. શું આ માહિતી સાચી છે ?

$40$ વિદ્યાર્થીઓનો એક સમૂહ $3$ વિષયો - ગણિતશાસ્ત્ર, ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્ર ની પરીક્ષામાં ઉપસ્થિત થાય છે. એવું જોવામાં આવ્યુ છે કે બધા જ વિદ્યાર્થીઓ ઓછામાં ઓછા એક વિષયમાં ઉતીર્ણ થયા છે, $20$ વિદ્યાર્થીઓ ગણિતશાસ્ત્રમાં ઉતીર્ણ થયા છે, $25$ વિદ્યાર્થીઓ ભૌતિકશાસ્ત્રમાં ઉતીર્ણ થયા છે, $16$ વિદ્યાર્થીઓ રસાયણશાસ્ત્રમાં ઉતીર્ણ થયા છે, વધુમાં વધુ $11$ વિદ્યાર્થીઓ ગણિતશાસ્ત્ર અને ભૌતિકશાસ્ત્રમાં બંનેમાં ઉતીર્ણ થયા છે, વધુમાં વધુ $15$ વિદ્યાર્થીઓ ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ન્ર માં ઉતીર્ણ થયા, વધુમાં વધુ $15$ વિદ્યાર્થીઓ ગણિતશાસ્ત્ર અને રસાયણશાસ્ત્રમાં ઉતીર્ણ થયા છે. ત્રણેય વિષયમાં ઉતીર્ણ થનાર વિદ્યાર્થીઓની મહત્તમ સંખ્યા___________ છે.

  • [JEE MAIN 2024]

$140$ વિધ્યાર્થીઑ ના વર્ગ માં વિધ્યાર્થીઑ ને $1$ to $140$ નંબર આપેલ છે બધા યુગ્મ નંબર વાળા વિધ્યાર્થીઓ ગણિત વિષય  પસંદ કરે છે , જે વિધ્યાર્થી નો નંબર $3$ વડે વિભાજય છે તે ભૌતિકવિજ્ઞાન પસંદ કરે છે અને જે વિધ્યાર્થીઓ ના નંબર $5$ વડે વિભાજય છે તે રસાયણ વિજ્ઞાન પસંદ કરે છે તો કેટલા વિધ્યાર્થીઓ ત્રણેય વિષય માથી એક પણ વિષય પસંદ કરતા નથી.

  • [JEE MAIN 2019]

એક ઉસ્ચતર માધ્યમિક શાળાના $220$ વિદ્યાર્થાઓના સર્વેક્ષણમાં, એવું જોવામાં આવ્યુ છે કે ઓછામાં ઓછા $125$ તથા વધુમા વધુ $130$ વિદ્યાથીઓ ગણિત શાસ્ત્ર ભણે છે; ઓછામાં ઓછા $85$ અને વધુમા વધુ $95$ ભૌતિકશાસ્ત્ર ભણે છે; ઓછામાં ઓછા $75$ અને વધુમા વધુ $90$ ૨સાયણશાસ્ત્ર ભણે છે; $30$ બન્ને ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્ર ભણે છે; $50$ બન્ને રસાયણશાસ્ત્ર અને ગણિતશાસ્ર ભણે છે; $40$ બન્ને ગણિતશાસ્ર અને ભૌતિકશાસ્ત્ર ભણે છે તથા $10$ આ પૈકીના કોઈ પણ વિષયો ભણતા નથી. ધારોકે $\mathrm{m}$ અને $\mathrm{n}$ અનુક્રમે આ ત્રણે વિષયો ભણતા વિદ્યાર્થાઓની ઓછામાં ઓછી તથા વધુમાં વધુ સંખ્યા છે. તો $\mathrm{m}+\mathrm{n}=$ ...........

  • [JEE MAIN 2024]

એક શહેરમાં $20\%$ લોકો કારમાં મુસાફરી કરે છે , $50\%$ લોકો બસમાં મુસાફરી કરે છે અને $10\%$ લોકો બસ અને કારમાં મુસાફરી કરે છે તો  . . . . $\%$ લોકો કાર અથવા બસમાં મુસાફરી કરે છે.