$200$ व्यक्ति किसी चर्म रोग से पीड़ित हैं, इनमें $120$ व्यक्ति रसायन $C _{1}, 50$ व्यक्ति रसायन $C _{2}$, और $30$ व्यक्ति रसायन $C _{1}$ और $C _{2}$ दोनों ही से प्रभावित हुए हैं, तो ऐसे व्यक्तियों की संख्या ज्ञात कीजिए जो प्रभावित हुए हों
रसायन $C_{1}$ अथवा रसायन $C _{2}$ से प्रभावित हए हैं।
Let $U$ denote the universal set consisting of individuals suffering from the skin disorder, $A$ denote the set of individuals exposed to the chemical $C_{1}$ and $B$ denote the set of individuals exposed to the chemical $C_{2}$
Here $\quad n( U )=200, n( A )=120, n( B )=50$ and $n( A \cap B )=30$
The number of individuals exposed either to chemical $C_{1}$ or to chemical $C_{2}$, i.e., $n( A \cup B )=n( A )+n( B )-n( A \cap B )$
$=120+50-30=140$
$400$ व्यक्तियों के समूह में, $250$ हिंदी तथा $200$ अंग्रेज़ी बोल सकते हैं। कितने व्यक्ति हिंदी तथा अंग्रेज़ी दोनों बोल सकते हैं ?
$200$ व्यक्ति किसी चर्म रोग से पीड़ित हैं, इनमें $120$ व्यक्ति रसायन $C _{1}, 50$ व्यक्ति रसायन $C _{2}$, और $30$ व्यक्ति रसायन $C _{1}$ और $C _{2}$ दोनों ही से प्रभावित हुए हैं, तो ऐसे व्यक्तियों की संख्या ज्ञात कीजिए जो प्रभावित हुए हों
रसायन $C _{1}$ किंतु रसायन $C _{2}$ से नहीं,
एक नगर में $10,000$ परिवारों में यह पाया गया कि $40\%$ परिवार अखबार $A$ खरीदते हैं, $20\%$ अखबार $B$ खरीदते हैं और $10\%$ परिवार अखबार $C$ खरीदते हैं, $5%$ परिवार $A$ और $B$, $3\%$ परिवार $B$ और $C$ और $4\%$ परिवार $A$ और $C$ खरीदते हैं। यदि $2\%$ परिवार तीनों अखबार खरीदते हैं, तो केवल $A$ खरीदने वाले परिवारों की संख्या कितनी है?
एक सर्वेक्षण से पता चलता है कि शहर के $63 \%$ व्यक्ति अखबार $A$ पढ़ते है जबकि $76 \%$ व्यक्ति अखबार $B$ पढ़ते है। यदि $x \%$ व्यक्ति दोनों अखबार पढ़ते है, तो $x$ का संभव मान हो सकता है
किसी कक्षा के $ 55 $ छात्रों में से, $23$ छात्र गणित, $24$ भौतिकी, $19 $ रसायन, $12$ गणित और भौतिकी, $ 9 $ गणित और रसायन,$7 $ भौतिकी और रसायन तथा $4$ सभी विषय पढ़ते हैं, तो केवल एक विषय पढ़ने वाले छात्रों की संख्या क्या होगी