There is small hole in a hollow sphere. The water enters in it when it is taken to a depth of $40 \,cm$ under water. The surface tension of water is $0.07 \,N / m$. The diameter of hole is .......... $mm$
$7$
$0.07$
$0.0007$
$0.7$
A soap bubble in a form of circular tube having radius of curvature $R$ and radius of curvature perpendicular to it is $5R$ . Find the excess pressure in the bubble :
Derive the formula for excess of pressure (pressure difference) inside the drop and bubble.
If the radius of a soap bubble is four times that of another, then the ratio of their excess pressures will be
Formation of bubble are in Column - $\mathrm{I}$ and pressure difference between them are given in Column - $\mathrm{II}$. Match them appropriately.
Column - $\mathrm{I}$ | Column - $\mathrm{II}$ |
$(a)$ Liquid drop in air | $(i)$ $\frac{{4T}}{R}$ |
$(b)$ Bubble of liquid in air | $(ii)$ $\frac{{2T}}{R}$ |
$(iii)$ $\frac{{2R}}{T}$ |
Two spherical soap bubbles formed in vacuum has diameter $3.0\,mm$ and $4.0\,mm$ . They coalesce to form a single spherical bubble. If the temperature remains unchanged, find the diameter of the bubble so formed ....... $mm$