तीन धावक $A, B, C$ एक दौड़ प्रतियोगिता में भाग लेते हैं। $A$ और $B$ के जीतने की प्रायिकता $C$ के जीतने की प्रायिकता से दुगुनी है। दौड़ $A$ या $B$ द्वारा जीते जीने की प्रायिकता है
$\frac{2}{3}$
$\frac{1}{2}$
$\frac{4}{5}$
$\frac{1}{3}$
दो विद्यार्थियों अनिल और आशिमा एक परीक्षा में प्रविष्ट हुए। अनिल के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.05$ है और आशिमा के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.10$ है। दोनों के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.02$ है। प्रायिकता ज्ञात कीजिए कि
दोनों में से केवल एक परीक्षा में उत्तीर्ण होगा।
यदि $A, B, C$ कोई तीन घटनायें हैं। यदि $P (S), S$ के घटाने की प्रायिकता है, तो $P\,(A \cap (B \cup C)) = $
$23$ व्यक्तियों की एक समिति, जो एक गोलाकार मेज के चारों ओर बैठते हैं। दो व्यक्तियों के एक साथ बैठने के प्रतिकूल संयोगानुपात हैं
यदि $P(A) = 0.25,\,\,P(B) = 0.50$ तथा $P(A \cap B) = 0.14,$ तब $P(A \cap \bar B) =$
भौतिक शास्त्र में फेल होने की संभावना $20\%$ तथा गणित में फेल होने की संभावना $10\%$ है। कम से कम एक विषय में फेल होने की संभावना ............. $\%$ है