यदृच्छया चुने गये किसी लीप वर्ष में $53$ रविवार या $53$ सोमवार होने की प्रायिकता है
$\frac{2}{7}$
$\frac{4}{7}$
$\frac{3}{7}$
$\frac{1}{7}$
एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।
प्रायिकता ज्ञात कीजिए कि वह न तो हींदी और न ही अंग्रेज़ी का अखबार पढती है।
मान लें $E$ तथा $F$ दो घटनाएँ इस प्रकार हैं कि $P ( E )=\frac{3}{5}, P ( F )=\frac{3}{10}$ और $P ( E \cap F )=\frac{1}{5}$ तब क्या $E$ तथा $F$ स्वतंत्र हैं?
किसी घटना के प्रतिकूल संयोगानुपात $6 : 5$ हैं, तो उस घटना के घटित न होने की प्रायिकता है
यदि $A$ तथा $B$ दो स्वतन्त्र घटनाएँ हों, तो $P\,(A + B) = $
यदि $A$ और $B$ स्वतंत्र घटनाएँ हैं तो $A$ या $B$ में से न्यूनतम एक के होने की प्रायिकता $=1- P \left( A ^{\prime}\right) P \left( B ^{\prime}\right)$