यदि एक समबाहु त्रिभुज के तीनों शीर्ष पर $2q,\, - q,\, - q$ आवेश क्रमश: स्थित हैं, तो त्रिभुज के केन्द्र पर
क्षेत्र शून्य है परन्तु विभव शून्य नहीं है
क्षेत्र शून्य नहीं है परन्तु विभव शून्य है
दोनों क्षेत्र तथा विभव शून्य है
दोनों क्षेत्र तथा विभव शून्य नहीं है
$L$ भुजा व $O$ केन्द्र वाले एक समबाहु षट्भुज के कोनों पर $6$ बिन्दु-आवेश चित्र में दर्शाये अनुरूप रखे है। $K =\frac{1}{4 \pi \varepsilon_0} \frac{ q }{ L ^2}$ को मानकर निर्धारित करें कि कौन प्रकथन सही है/हैं
$(A)$ $O$ पर विधुत क्षेत्र $6 K$ व $O D$ दिशा में है।
$(B)$ $O$ पर विभव शून्य है।
$(C)$ लाइन $PR$ पर सब जगह विभव समान है।
$(D)$ लाइन $ST$ पर सब जगह विभव समान है।
दो आवेश $ + \,q$ और $ - \,q$ एक निश्चित दूरी पर हैं, उनके बीचों बीच स्थित बिन्दु पर
त्रिज्या $R$ के एक वृत्त की परिधि पर $10$ आवेश ऐसे रखे गये हैं जिससे क्रमागत आवेशों के बीच कोणीय दूरी समान रहें। एकान्तर आवेशों $1,3,5,7,9$ के ऊपर क्रमशः $(+q)$ आवेश और $2 ,4,6,8,10$ के ऊपर क्रमशः $(-q)$ आवेश हैं। वृत्त के केन्द्र पर विभव $(V)$ और विधुत क्षेत्र $( E )$ होगी।
(अनन्त पर $V =0$ लीजिए)
चित्र में दिखाये गये अनुसार $2 L$ भुजा के एक वर्ग के चार कोनों पर $+ q ,+ q ,- q$ और $- q$ आवेश स्थित है, दो आवेश $+ q$ और $+ q$ के बीच के मध्य बिन्दु $A$ पर विधुत विभव है -
$R$ त्रिज्या के एक खोखले धात्विक गोले को $Q$ आवेश दिया गया है। इसके केन्द्र पर विभव होगा