Three coins are tossed once. Find the probability of getting no tails.
When three coins are tossed once, the sample space is given by $S =\{ HHH , HHT , HTH , THH , HTT , THT , TTH , TTT \}$
$\therefore$ Accordingly, $n ( S )=8$
It is known that the probability of an event $A$ is given by
$P ( A )=\frac{\text { Number of outcomes favourable to } A }{\text { Total number of possible outcomes }}=\frac{n( A )}{n( S )}$
Let $I$ be the event of the occurrence of no tail.
Accordingly, $I$ $=\{ HHH \}$
$\therefore P(I)=\frac{n(I)}{n(S)}=\frac{1}{8}$
The chances of throwing a total of $3$ or $5$ or $11$ with two dice is
Consider the experiment in which a coin is tossed repeatedly until a head comes up. Describe the sample space.
A bag contains $9$ discs of which $4$ are red, $3$ are blue and $2$ are yellow. The discs are similar in shape and size. A disc is drawn at random from the bag. Calculate the probability that it will be yellow.
A die has two faces each with number $^{\prime}1^{\prime}$ , three faces each with number $^{\prime}2^{\prime}$ and one face with number $^{\prime}3^{\prime}$. If die is rolled once, determine $P(1$ or $3)$
Three coins are tossed once. Find the probability of getting no head.