ત્રણ સિક્કાઓને એકવાર ઉછાળવામાં આવે છે. જો ત્રણ છાપ દેખાય તેને ઘટના $A$ , બે છાપ અને એક કાંટો દેખાય તેને ઘટના $B$, ત્રણે કાંટા દેખાય તેને ઘટના $C$ અને પહેલા સિક્કા ઉપર છાપ દેખાય તેને ઘટના $D$ દ્વારા દર્શાવવામાં આવે છે. કઈ ઘટનાઓ સંયુક્ત છે ?
When three coins are tossed, the sample space is given by
$S =\{ HHH ,\, HHT , \,HTH ,\, HTT , \,THH ,\, THT , \,TTH , \,TTT \}$
Accordingly,
$A=\{H H H\}$
$B =\{ HHT ,\, HTH ,\, THH \}$
$C =\{ TTT \}$
$D =\{ HHH , \,HHT , \,HTH , \,HTT \}$
We now observe that
$A \cap B$ $=\phi, A \cap C$ $=\phi, A \cap D$ $=\{H H H\} \neq \phi$
$B \cap C=\phi, B \cap D$ $=\{H H T,\, H T H\} \neq \phi$
$C \cap D=\phi$
If an event has more than one sample point of a sample space, it is called a compound event. Thus, $B$ and $D$ are compound events.
બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
$A$ અને $B$ પરસ્પર નિવારક અને નિઃશેષ છે.
$52$ પત્તા પૈકી એક પત્તુ પસંદ કરતાં તે પૈકી રાણી અથવા લાલ પત્તુ હોવાની સંભાવના કેટલી થાય ?
બે પાસાંને સાથે ઉછાળવામાં આવે છે તો ઉપરના પૂણાકોનો સરવાળો $5$ થાય તેની સંભાવના.
ત્રણ સિક્કા એકવાર ઉછાળવામાં આવે છે. નીચેની ઘટનાઓનું વર્ણન કરો :
પરસ્પર નિવારક ન હોય તેવી બે ઘટનાઓ
એક સિક્કાને ત્રણવાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાઓનો વિચાર કરો :
$A :$ ‘કોઈ છાપ મળતી નથી,
$B :$ ‘એક જ છાપ મળે છે અને
$C:$ “ઓછામાં ઓછી બે છાપ મળે છે”.
શું આ પરસ્પર નિવારક અને નિઃશેષ ઘટનાઓનો ગણ છે ?