Three coins are tossed simultaneously. Consider the event $E$ ' three heads or three tails', $\mathrm{F}$ 'at least two heads' and $\mathrm{G}$ ' at most two heads '. Of the pairs $(E,F)$, $(E,G)$ and $(F,G)$, which are independent? which are dependent ?
The sample space of the experiment is given by
Clearly $\mathrm{S}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$
$\mathrm{E}=\{\mathrm{HHH}, \mathrm{TTT}\}, \mathrm{F}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
and $\mathrm{G}=\{\mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$
Also $\mathrm{E} \cap \mathrm{F}=\{\mathrm{HHH}\}, \mathrm{E} \cap \mathrm{G}=\{\mathrm{TTT}\}, \mathrm{F} \cap \mathrm{G}=\{\mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
Therefore $\mathrm{P}(\mathrm{E})=\frac{2}{8}=\frac{1}{4}, \mathrm{P}(\mathrm{F})=\frac{4}{8}=\frac{1}{2}, \mathrm{P}(\mathrm{G})=\frac{7}{8}$
and $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{8}, \mathrm{P}(\mathrm{E} \cap \mathrm{G})=\frac{1}{8}, \mathrm{P}(\mathrm{F} \cap \mathrm{G})=\frac{3}{8}$
Also $\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})=\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}, \mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{G})=\frac{1}{4} \times \frac{7}{8}=\frac{7}{32}$
and $\mathrm{P}(\mathrm{F}), \mathrm{P}(\mathrm{G})=\frac{1}{2} \times \frac{7}{8}=\frac{7}{16}$
Thus $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$
$\mathrm{P}(\mathrm{E} \cap \mathrm{G}) \neq \mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{G})$
and $\mathrm{P}(\mathrm{F} \cap \mathrm{G}) \neq \mathrm{P}(\mathrm{F}) \cdot \mathrm{P}(\mathrm{G})$
Hence, the events $(E$ and $F)$ are independent, and the events $(E$ and $G)$ and $(F$ and $G) $ are dependent.
Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that Both Anil and Ashima will not qualify the examination.
An unbiased coin is tossed. If the result is a head, a pair of unbiased dice is rolled and the number obtained by adding the numbers on the two faces is noted. If the result is a tail, a card from a well shuffled pack of eleven cards numbered $2, 3, 4,.......,12$ is picked and the number on the card is noted. The probability that the noted number is either $7$ or $8$, is
$A$ and $B$ are two events such that $P(A)=0.54$, $P(B)=0.69$ and $P(A \cap B)=0.35.$ Find $P \left( A ^{\prime} \cap B ^{\prime}\right)$.
One bag contains $5$ white and $4$ black balls. Another bag contains $7$ white and $9$ black balls. A ball is transferred from the first bag to the second and then a ball is drawn from second. The probability that the ball is white, is
A coin is tossed twice. If events $A$ and $B$ are defined as :$A =$ head on first toss, $B = $ head on second toss. Then the probability of $A \cup B = $