Given two independent events $A$ and $B$ such $P(A)=0.3,\,P(B)=0.6 .$ Find  $P($ neither $A$or $B)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$P($ neither $A$ nor $B)$ $=P\left(A^{\prime} \cap B^{\prime}\right)$

$=\mathrm{P}\left((\mathrm{A} \cup \mathrm{B})^{\prime}\right)$

$=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})$

$=1-0.72$

$=0.28$

Similar Questions

One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $\mathrm{E}$ and $\mathrm{F}$ independent ?

$E:$ ' the card drawn is a king and queen '

$F:$  ' the card drawn is a queen or jack '

If from each of the three boxes containing $3$ white and $1$ black, $2$ white and $2$ black, $1$ white and $3$ black balls, one ball is drawn at random, then the probability that $2$ white and $1$ black ball will be drawn is

  • [IIT 1998]

Three coins are tossed simultaneously. Consider the event $E$ ' three heads or three tails', $\mathrm{F}$ 'at least two heads' and $\mathrm{G}$ ' at most two heads '. Of the pairs $(E,F)$, $(E,G)$ and $(F,G)$, which are independent? which are dependent ?

Two aeroplanes $I$ and $II$ bomb a target in succession. The probabilities of $l$ and $II$ scoring a hit correctlyare $0.3$ and $0.2,$ respectively. The second plane will bomb only if the first misses the target. The probability that the target is hit by the second plane is

  • [AIEEE 2007]

Twelve tickets are numbered $1$ to $12$. One ticket is drawn at random, then the probability of the number to be divisible by $2$ or $3$, is