तीन सिक्कों को उछाला गया है। मान लें $E$ घटना 'तीन चित या तीन पट प्राप्त होना ' और $F$ घटना 'न्यूनतम दो चित प्राप्त होना' और $G$ घटना 'अधिकतम दो पट प्राप्त होना' को निरूपित करते हैं। युग्म $( E , F ),( E , G )$ और $( F , G )$ में कौन-कौन से स्वतंत्र हैं? कौन-कौन से पराश्रित हैं?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The sample space of the experiment is given by

Clearly      $\mathrm{S}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$

$\mathrm{E}=\{\mathrm{HHH}, \mathrm{TTT}\}, \mathrm{F}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$

and        $\mathrm{G}=\{\mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{HTT}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$

Also       $\mathrm{E} \cap \mathrm{F}=\{\mathrm{HHH}\}, \mathrm{E} \cap \mathrm{G}=\{\mathrm{TTT}\}, \mathrm{F} \cap \mathrm{G}=\{\mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$

Therefore  $\mathrm{P}(\mathrm{E})=\frac{2}{8}=\frac{1}{4}, \mathrm{P}(\mathrm{F})=\frac{4}{8}=\frac{1}{2}, \mathrm{P}(\mathrm{G})=\frac{7}{8}$

and          $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{8}, \mathrm{P}(\mathrm{E} \cap \mathrm{G})=\frac{1}{8}, \mathrm{P}(\mathrm{F} \cap \mathrm{G})=\frac{3}{8}$

Also       $\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})=\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}, \mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{G})=\frac{1}{4} \times \frac{7}{8}=\frac{7}{32}$

and        $\mathrm{P}(\mathrm{F}), \mathrm{P}(\mathrm{G})=\frac{1}{2} \times \frac{7}{8}=\frac{7}{16}$

Thus      $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{F})$

$\mathrm{P}(\mathrm{E} \cap \mathrm{G}) \neq \mathrm{P}(\mathrm{E}) \cdot \mathrm{P}(\mathrm{G})$

and      $\mathrm{P}(\mathrm{F} \cap \mathrm{G}) \neq \mathrm{P}(\mathrm{F}) \cdot \mathrm{P}(\mathrm{G})$

Hence, the events $(E$ and $F)$ are independent, and the events $(E$ and $G)$ and $(F$ and $G) $ are dependent.

Similar Questions

माना स्वतंत्र घटनाओं $A$ तथा $B$ के लिए $P ( A )= p$ तथा $P ( B )=2 p$ हैं। तो $p$ का अधिकतम मान, जिसके लिए $P ( A$ तथा $B$ में से ठीक एक घटित होती है $)=\frac{5}{9}$ है

  • [JEE MAIN 2021]

सिद्ध कीजिए कि यदि $E$ और $F$ दो स्वतंत्र घटनाएँ हैं तो $E$ और $F ^{\prime}$ भी स्वतंत्र होंगी।

यदि $A$ तथा $B$ दो स्वेच्छ घटनायें हो, तब

एक पात्र $A$ में $6$ लाल व $4$ काली गेंदें हैं तथा पात्र $B$ में $4$ लाल व $6$ काली गेंदें हैं। पात्र $A$ में से एक गेंद यदृच्छया निकाली जाती है और पात्र $B$ में रख दी जाती है। फिर एक गेंद पात्र $B$ में से निकालकर पात्र $A$ में रख दी जाती । यदि अब एक गेंद पात्र $A$ में से यदृच्छया निकाली जाए तो इसके लाल रंग की होने की प्रायिकता है

  • [IIT 1988]

तीन व्यक्ति $P, Q$ तथा $R$ स्वतंत्र रूप से एक निशाने को भेदने का प्रयास करते हैं। यदि उनके निशाने को भेद पाने की प्रायिकताएं क्रमशः $\frac{3}{4}, \frac{1}{2}$ तथा $\frac{5}{8}$ हैं, तो $P$ अथवा $Q$ के निशाना भेद पाने परन्तु $R$ के निशाना न भेद पाने की प्रायिकता है 

  • [JEE MAIN 2013]