આકૃતિમાં દર્શાવ્યા અનુસાર ત્રણ અનંત લંબાઈ ધરાવતી વિદ્યુતભારીત પાતળી શીટ (તકિત)ને ગોઠવવામાં આવે છે. $P$ બિંદુ આગળ વિદ્યુત ક્ષેત્રનું મૂલ્ય $\frac{x \sigma}{\epsilon_o}$ મળે છે. $x$ નું મૂલ્ય. . . . . .હશે. (દરેક રાશિ $SI$ એકમ પદ્ધતિમાં માપવામાં આવેલ છે.)
$1$
$2$
$5$
$6$
આકૃતિમાં બતાવેલ બે અનંત પાતળા સમતલની પૃષ્ઠ વિદ્યુતભાર ઘનતા $\sigma$ છે. તો ત્રણ જુદા જુદા પ્રદેશ $E_{ I }, E_{ II }$ અને $E_{III}$ માં વિદ્યુતક્ષેત્ર કેટલું મળે?
$6\,m$ ત્રિજ્યા ધરાવતા ગોળાની કદ વિદ્યુતભાર ઘનતા $2\,\mu\,C / cm ^3$ છે. ગોળાની સપાટીમાંથી બહાર આવતી પ્રતિ એકમ પૃષ્ઠ ક્ષેત્રફળ દીઠ બળ રેખાઓની સંખ્યા $..........\times 10^{10} NC ^{-1}$ હશે.
[Given : Permittivity of vacuum $\left.\epsilon_{0}=8.85 \times 10^{-12} C ^{2} N ^{-1}- m ^{-2}\right]$
ગોસના નિયમનો ઉપયોગ કર્યા સિવાય વિધુતભારની સમાન રેખીય ઘનતા $\lambda$ ધરાવતા લાંબા પાતળા તારને લીધે ઉદભવતા વિધુતક્ષેત્રનું સૂત્ર મેળવો. (સૂચન : કુલંબના નિયમનો સીધો ઉપયોગ કરો અને જરૂરી સંકલનની ગણતરી કરો.)
એક ગોળા પર એકસમાન વિજભાર પથરાયેલ છે તેની વિજભાર ઘનતા નીચે મુજબ આપવામાં આવે છે.
$\rho (r)\, = \,{\rho _0}\left( {1 - \frac{r}{R}} \right)$, $r < R$ માટે
$\rho (r)\,=\,0$, $r\, \ge \,R$ માટે
જ્યાં $r$ એ વિજભાર વિતરણના કેન્દ્રથી અંતર અને $\rho _0$ અચળાંક છે. $(r < R)$ ના અંદરના બિંદુ પાસે વિદ્યુતક્ષેત્ર કેટલું મળે?
$R$ ત્રિજ્યાની ગોળીય કવચ પર $Q$ વિધુતભાર વિતરીત છે. તે $q$ વિધુતભાર પર $F$ બળ લગાડે છે. જો $q$ વિધુતભાર ગોળીય કવચ થી $r$ અંતરે હોય તો બળ $F$ માટે કયું વિધાન સાચું છે.