Three rods of identical area of cross-section and made from the same metal form the sides of an isosceles triangle $ABC$, right angled at $B$. The points $A$ and $B$ are maintained at temperatures $T$ and $\sqrt 2 T$ respectively. In the steady state the temperature of the point C is ${T_C}$. Assuming that only heat conduction takes place, $\frac{{{T_C}}}{T}$ is equal to

  • [IIT 1995]
  • A

    $\frac{1}{{(\sqrt 2 + 1)}}$

  • B

    $\frac{3}{{(\sqrt 2 + 1)}}$

  • C

    $\frac{1}{{2(\sqrt 2 - 1)}}$

  • D

    $\frac{1}{{\sqrt 3 (\sqrt 2 - 1)}}$

Similar Questions

One end of a copper rod of uniform cross-section and of length $3.1$ m is kept in contact with ice and the other end with water at $100°C $ . At what point along it's length should a temperature of $200°C$ be maintained so that in steady state, the mass of ice melting be equal to that of the steam produced in the same interval of time. Assume that the whole system is insulated from the surroundings. Latent heat of fusion of ice and vaporisation of water are $80 cal/gm$ and $540$ cal/gm respectively

A slab consists of two parallel layers of copper and brass of the same thickness and having thermal conductivities in the ratio $1 : 4$ . If the free face of brass is at ${100^o}C$ and that of copper at $0^\circ C $, the temperature of interface is ........ $^oC$

  • [IIT 1981]

The thickness of a metallic plate is $0.4 cm$ . The temperature between its two surfaces is ${20^o}C$. The quantity of heat flowing per second is $50$ calories from $5c{m^2}$ area. In $CGS$ system, the coefficient of thermal conductivity will be

If the radius and length of a copper rod are both doubled, the rate of flow of heat along the rod increases ....... times

Find effective thermal resistance between $A$ & $B$ of cube made up of $12$ rods of same dimensions and shown given thermal conductivity. [ $l =$ length of rod, $a =$ cross section area of rod]