Three ships $A, B$ and $C$ sail from England to India. If the ratio of their arriving safely are $2 : 5, 3 : 7$ and $6 : 11$ respectively then the probability of all the ships for arriving safely is

  • A

    $\frac{{18}}{{595}}$

  • B

    $\frac{6}{{17}}$

  • C

    $\frac{3}{{10}}$

  • D

    $\frac{2}{7}$

Similar Questions

If $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5},$ find $P(A \cap B)$ if $A$ and $B$ are independent events

$A$ and $B$ are two events such that $P(A)=0.54$, $P(B)=0.69$ and $P(A \cap B)=0.35.$ Find $P \left( B \cap A ^{\prime}\right)$.

An experiment has $10$ equally likely outcomes. Let $\mathrm{A}$ and $\mathrm{B}$ be two non-empty events of the experiment. If $\mathrm{A}$ consists of $4$ outcomes, the number of outcomes that $B$ must have so that $A$ and $B$ are independent, is

  • [IIT 2008]

If the probability of $X$ to fail in the examination is $0.3$ and that for $Y$ is $0.2$, then the probability that either $X$ or $Y$ fail in the examination is

  • [IIT 1989]

Events $\mathrm{A}$ and $\mathrm{B}$ are such that $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ and $\mathrm{P}$ $($ not $ \mathrm{A}$ or not $\mathrm{B})=\frac{1}{4} .$ State whether $\mathrm{A}$ and $\mathrm{B}$ are independent?