तीन जहाज $A, B$ व $C$ इग्लैंड से भारत आते हैं। यदि उनके सुरक्षित आने के अनुपात क्रमश: $2 : 5, 3 : 7$ व $6 : 11$ हैं तो सभी जहाजों के सुरक्षित आने की प्रायिकता है
$\frac{{18}}{{595}}$
$\frac{6}{{17}}$
$\frac{3}{{10}}$
$\frac{2}{7}$
तीन घटनाओं $A , B$ तथा $C$ की प्रायिकताएं $P ( A )=0.6$, $P ( B )=0.4$ तथा $P ( C )=0.5$ है। यदि $P ( A \cup B )=0.8$, $P ( A \cap C )=0.3, P ( A \cap B \cap C )=0.2, P ( B \cap$ $C )=\beta$ तथा $P ( A \cup B \cup C )=\alpha$, जहाँ $0.85 \leq \alpha \leq 0.95$, तो $\beta$ निम्न में से किस अंतराल में है
एक पात्र $A$ में $6$ लाल व $4$ काली गेंदें हैं तथा पात्र $B$ में $4$ लाल व $6$ काली गेंदें हैं। पात्र $A$ में से एक गेंद यदृच्छया निकाली जाती है और पात्र $B$ में रख दी जाती है। फिर एक गेंद पात्र $B$ में से निकालकर पात्र $A$ में रख दी जाती । यदि अब एक गेंद पात्र $A$ में से यदृच्छया निकाली जाए तो इसके लाल रंग की होने की प्रायिकता है
दो पासे स्वतंत्र रुप से फेंके जाते हैं। माना पहले पासे पर प्रकट होने वाली संख्या के दूसरे पासे पर प्रकट होने वाली संख्या से कम होने की घटना $\mathrm{A}$ है, पहले पासे पर सम संख्या तथा दसरे पासे पर विषम संख्या के प्रकट होने की घटना $\mathrm{B}$ है और पहले पासे पर विषम संख्या तथा दूसरे पासे पर सम संख्या के प्रकट होने की घटना $\mathrm{C}$ है। तो
माना एक प्रतिदश्रि समष्टि में तीन स्वेच्छ घटनायें ${E_1},{E_2}$ व ${E_3}$ हैं। निम्न में से कौन सा कथन सत्य हैं
यदि $P\,(A) = \frac{1}{4},\,\,P\,(B) = \frac{5}{8}$ तथा $P\,(A \cup B) = \frac{3}{4},$ तो $P\,(A \cap B) = $