Three weights $W, 2W$ and $3W$ are connected to identical springs suspended from a rigid horizontal rod. The assembly of the rod and the weights fall freely. The positions of the weights from the rod are such that
$3W$ will be farthest
$W$ will be farthest
All will be at the same distance
$2W$ will be farthest
A mass of $10\,kg$ is suspended vertically by a rope from the roof. When a horizontal force is applied on the rope at some point, the rope deviated at an angle of $45^o$ at the roof point. If the suspended mass is at equilibrium, the magnitude of the force applied is .......... $N$ $(g = 10\,ms^{-2})$
When body is at rest or it is in uniform motion, no force act on it.
Two particles of mass $m$ each are tied at the ends of a light string of length $2a$ . The whole system is kept on a frictionless horizontal surface with the string held tight so that each mass is at a distance $'a'$ from the centre $P$ (as shown in the figure). Now, the mid-point of the string is pulled vertically upwards with a small but constant force $F$ . As a result, the particles move towards each other on the surface. The magnitude of acceleration, when the separation between them becomes $2x$ , is
In the figure, blocks $A$ and $B$ of masses $2m$ and $m$ are connected with a string and system is hanged vertically with the help of a spring. Spring has negligible mass. Find out magnitude of acceleration of masses $2m$ and $m$ just after the instant when the string is cut
A football of radius $R$ is kept on a hole of radius $r (r < R)$ made on a plank kept horizontally. One end of the plank is now lifted so that it gets tilted making an angle $\theta$ from the horizontal as shown in the figure below. The maximum value of $\theta$ so that the football does not start rolling down the plank satisfies (figure is schematic and not drawn to scale) -