True statement $A$ and true statement $B$ are two independent events of an experiment.Let $P\left( A \right) = 0.3$ , $P\left( {A \vee B} \right) = 0.8$ then $P\left( {A \to B} \right)$ is (where $P(X)$ denotes probability that statement $X$​ is true statement)

 

  • A

    $\frac{{32}}{{35}}$

  • B

    $\frac{6}{{35}}$

  • C

    $\frac{3}{{35}}$

  • D

    data is insufficient

Similar Questions

Let $S$ be a set containing n elements and we select $2$ subsets $A$ and $B$ of $S$ at random then the probability that $A \cup B = S$ and $A \cap B = \phi $ is

If $\mathrm{A}$ and $\mathrm{B}$ are two events such that $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ find $\mathrm{P}$ $($ not $\mathrm{A}$ and not $\mathrm{B})$

$A$ and $B$ are events such that $P(A)=0.42$,  $P(B)=0.48$ and $P(A$ and $B)=0.16 .$ Determine $P ($ not $A ).$

An electronic assembly consists of two subsystems, say, $A$ and $B$. From previous testing procedures, the following probabilities are assumed to be known :

$\mathrm{P}$ $( A$ fails $)=0.2$

$P(B$ fails alone $)=0.15$

$P(A$ and $ B $ fail $)=0.15$

Evaluate the following probabilities $\mathrm{P}(\mathrm{A}$ fails alone $)$

Two dice are thrown simultaneously. The probability that sum is odd or less than $7$ or both, is