Fill in the blanks in following table :

$P(A)$ $P(B)$ $P(A \cap B)$ $P (A \cup B)$
$0.35$  ........... $0.25$  $0.6$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here, $P(A)=0.35$,  $P(A \cap B)=0.25$,  $P(A \cup B)=0.6$

We know that $P (A \cup B)= P ( B )+ P ( B )- P (A \cap B)$

$\therefore $  $0.6=0.35+ P ( B )-0.25$

$\Rightarrow $  $P ( B )=0.6-0.35+0.25$

$\Rightarrow $  $P ( B )=0.5$

Similar Questions

Consider three sets $E_1=\{1,2,3\}, F_1=\{1,3,4\}$ and $G_1=\{2,3,4,5\}$. Two elements are chosen at random, without replacement, from the set $E _1$, and let $S _1$ denote the set of these chosen elements.

Let $E_2=E_1-S_1$ and $F_2=F_1 \cup S_1$. Now two elements are chosen at random, without replacement, from the set $F_2$ and let $S_2$ denote the set of these chosen elements.

Let $G _2= G _1 \cup S _2$. Finally, two elements are chosen at random, without replacement, from the set $G _2$ and let $S _3$ denote the set of these chosen elements.

Let $E_3=E_2 \cup S_3$. Given that $E_1=E_3$, let $p$ be the conditional probability of the event $S_1=\{1,2\}$. Then the value of $p$ is

  • [IIT 2021]

Given $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$. Find $P(A $  or  $B),$ if $A$ and $B$ are mutually exclusive events.

Let $E$ and $F$ be two independent events. The probability that both $E$ and $F$ happens is $\frac{1}{{12}}$ and the probability that neither $E$ nor $F$ happens is $\frac{1}{2},$ then

  • [IIT 1993]

Two dice are thrown. What is the probability that the sum of the numbers appearing on the two dice is $11$, if $5$ appears on the first

For an event, odds against is $6 : 5$. The probability that event does not occur, is