Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that First ball is black and second is red.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Total number of balls $=18$

Number of red balls $=8$

Number of black balls $=10$

Probability of getting first ball black $=\frac{10}{18}=\frac{5}{9}$

The ball is replaced after the first draw.

Probability of getting second ball as red $=\frac{8}{18}=\frac{4}{9}$

Therefore, probability of getting first ball as black and second ball as red $=\frac{5}{9} \times \frac{4}{9}=\frac{20}{81}$

Similar Questions

If $E$ and $F$ are events such that $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2}$ and $P(E$ and $F )=\frac{1}{8},$ find : $P ( E$ or  $F )$

$A$ and $B$ are two independent events. The probability that both $A$ and $B$ occur is $\frac{1}{6}$ and the probability that neither of them occurs is $\frac{1}{3}$. Then the probability of the two events are respectively

If $P(B) = \frac{3}{4}$, $P(A \cap B \cap \bar C) = \frac{1}{3}{\rm{ }}$ and $P(\bar A \cap B \cap \bar C) = \frac{1}{3},$ then $P(B \cap C)$ is

  • [IIT 2003]

Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that both balls are red.

In a horse race the odds in favour of three horses are $1:2 ,  1:3$ and $1:4$. The probability that one of the horse will win the race is