એક ખોખામાં $10 $ કાળા રંગના અને $8$ લાલ રંગના દડા છે. તે ખોખામાંથી બે દડા યાદચ્છિક રીતે પુરવણી સહિત પસંદ કરવામાં આવે છે. પહેલો દડો કાળા રંગનો અને બીજો દડો લાલ રંગનો હોય તેની સંભાવના શોધો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Total number of balls $=18$

Number of red balls $=8$

Number of black balls $=10$

Probability of getting first ball black $=\frac{10}{18}=\frac{5}{9}$

The ball is replaced after the first draw.

Probability of getting second ball as red $=\frac{8}{18}=\frac{4}{9}$

Therefore, probability of getting first ball as black and second ball as red $=\frac{5}{9} \times \frac{4}{9}=\frac{20}{81}$

Similar Questions

ઘટનાઓ $E$ અને $F$ એવા પ્રકારની છે કે $P ( E )=\frac{1}{4}$, $P ( F )=\frac{1}{2}$ અને $P(E$ અને $F )=\frac{1}{8},$ તો $P(E$ અથવા $F$) શોધો. 

કોઇ બે નિરપેક્ષ ઘટનાઓ ${E_1}$ અને ${E_2},$ માટે $P\,\{ ({E_1} \cup {E_2}) \cap ({\bar E_1} \cap {\bar E_2})\} $ એ 

  • [IIT 1991]

ભૌતિકશાસ્ત્રમાં નાપાસ થવાની શક્યતા $20\%$ છે. અને ગણિતશાસ્ત્રમાં નાપાસ થવાની શક્યતા $10\%$ છે. તો ઓછામાં ઓછા એક વિષયમાં નાપાસ હોવાની સંભાવના કેટલા ............. $\%$ થાય ?

સારી રીતે ચીપેલાં $52$ પત્તાંની થોકડીમાંથી એક પનું યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. ઘટનાઓ $E$ અને $F$ નિરપેક્ષ છે ?

$E :$ ‘પસંદ કરેલ પત્તે રાજા અથવા રાણી છે”. $F : $ ‘પસંદ કરેલ પતું રાણી અથવા ગુલામ છે”.

જો $A$,$B$ અને $C$ એ ત્રણ ઘટના એવી છે કે જેથી $P\left( {A \cap \bar B \cap \bar C} \right) = 0.6$, $P\left( A \right) = 0.8$ અને  $P\left( {\bar A \cap B \cap C} \right) = 0.1$ થાય તો $P$(ઘટના $A$,$B$ અને $C$ માંથી ઓછામા ઓછા બે થાય) તેની કિમત મેળવો.