The probability of happening at least one of the events $A$ and $B$ is $0.6$. If the events $A$ and $B$ happens simultaneously with the probability $0.2$, then $P\,(\bar A) + P\,(\bar B) = $
$0.4$
$0.8$
$1.2$
$1.4$
True statement $A$ and true statement $B$ are two independent events of an experiment.Let $P\left( A \right) = 0.3$ , $P\left( {A \vee B} \right) = 0.8$ then $P\left( {A \to B} \right)$ is (where $P(X)$ denotes probability that statement $X$ is true statement)
A die marked $1,\,2,\,3$ in red and $4,\,5,\,6$ in green is tossed. Let $A$ be the event, $'$ the number is even,$'$ and $B$ be the event, 'the number is red'. Are $A$ and $B$ independent?
If $P\,({A_1} \cup {A_2}) = 1 - P(A_1^c)\,P(A_2^c)$ where $c$ stands for complement, then the events ${A_1}$ and ${A_2}$ are
Two persons $A$ and $B$ throw a (fair)die (six-faced cube with faces numbered from $1$ to $6$ ) alternately, starting with $A$. The first person to get an outcome different from the previous one by the opponent wins. The probability that $B$ wins is
If odds against solving a question by three students are $2 : 1 , 5:2$ and $5:3$ respectively, then probability that the question is solved only by one student is