સારી રીતે ચીપેલાં $52$ પત્તાંની થોકડીમાંથી એક પનું યાદચ્છિક રીતે પસંદ કરવામાં આવે છે. ઘટનાઓ $E$ અને $F$ નિરપેક્ષ છે ?

$E :$ ‘પસંદ કરેલ પત્તે રાજા અથવા રાણી છે”. $F : $ ‘પસંદ કરેલ પતું રાણી અથવા ગુલામ છે”.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In a deck of $52$ cards, $4$ cards are kings, $4$ cards are queens, and $4$ cards are jacks.

$\therefore \mathrm{P}(\mathrm{E})=\mathrm{P}$ (The card drawn is a king or a queen) $=\frac{8}{52}=\frac{2}{13}$

$\therefore \mathrm{P}(\mathrm{F})=\mathrm{P}$ (The card drawn is a king or a jack) $ =\frac{8}{52}=\frac{2}{13}$

There are $4$ cards which are king and queen or jack.

$\therefore $ $\mathrm{P}(\mathrm{EF})=\mathrm{P}$ (The card drawn is king or a queen, or queen or a jack) $=\frac{4}{52}=\frac{1}{13}$.

$\mathrm{P}(\mathrm{E}) \times \mathrm{P}(\mathrm{F})=\frac{2}{13} \cdot \frac{2}{13}=\frac{4}{169} \neq \frac{1}{13}$

$\Rightarrow \mathrm{P}(\mathrm{E}), \mathrm{P}(\mathrm{F}) \neq \mathrm{P}(\mathrm{EF})$

Therefore, the given events $E$ and $F$ are not independent.

Similar Questions

એક ખોખામાં $10 $ કાળા રંગના અને $8$ લાલ રંગના દડા છે. તે ખોખામાંથી બે દડા યાદચ્છિક રીતે પુરવણી સહિત પસંદ કરવામાં આવે છે. પહેલો દડો કાળા રંગનો અને બીજો દડો લાલ રંગનો હોય તેની સંભાવના શોધો.

ઘટનાઓ $A$ અને $B$ માટે $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ અને  $P (A -$ નહી અથવા $B-$ નહી $) =$ $\frac {1}{4}$. $A$ અને $B$ નિરપેક્ષ છે કે નહિ ?

એક સમતોલ પાસાને બે વખત ફેંકવામાં આવે છે. ઘટના $A$, ‘પ્રથમ પ્રયત્ન અયુગ્મ સંખ્યા મળે” અને ઘટના $B$, “બીજા પ્રયત્ન અયુગ્મ સંખ્યા મળે તેમ હોય, તો ઘટનાઓ $A$ અને $B$ નિરપેક્ષ છે કે કેમ તે ચકાસો. 

એક અસમતોલ સિક્કો ઉછાળવામાં આવે છે.જો છાપ આવે તો બે અસમતોલ પાસાને ઉછાળીને તેના પરના અંકોનેા સરવાળો નોધવામાં આવે છે.અને જો કાંટો આવે તો સરખી રીતે છીપેલાં $11$ પત્તાં કે જેની પર $2,3,4,…,12$ અંકો લખેલો છે તેમાંથી એક પત્તું પસંદ કરવામાં આવે છે અને તેના પરનો અંક નોંધવામાં આવે છે.તો નોધાયેલી સંખ્યા $7$ અથવા $8$ હોય,તેની સંભાવના મેળવો.

  • [IIT 1994]

આપેલ ઘટનાઓ $A$ અને $B$ માટે $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ અને $\mathrm{P}(\mathrm{B})=p .$ આપેલ છે. જો ઘટનાઓ પરસ્પર નિવારક $p$ માં શોધો.