Two charged particles, each with a charge of $+q$, are located along the $x$ -axis at $x = 2$ and $x = 4$, as shown below. Which of the following shows the graph of the magnitude of the electric field along the $x$ -axis from the origin to $x = 6$?
Two point charges of $20\,\mu \,C$ and $80\,\mu \,C$ are $10\,cm$ apart. Where will the electric field strength be zero on the line joining the charges from $20\,\mu \,C$ charge......$m$
The charge distribution along the semi-circular arc is non-uniform . Charge per unit length $\lambda $ is given as $\lambda = {\lambda _0}\sin \theta $ , with $\theta $ measured as shown in figure. $\lambda_0$ is a positive constant. The radius of arc is $R$ . The electric field at the center $P$ of semi-circular arc is $E_1$ . The value of $\frac{{{\lambda _0}}}{{{ \in _0}{E_1}R}}$ is
The distance between the two charges $25\,\mu C$ and $36\,\mu C$ is $11\,cm$ At what point on the line joining the two, the intensity will be zero
Four charges are placed on corners of a square as shown in figure having side of $5\,cm$. If $Q$ is one microcoulomb, then electric field intensity at centre will be
A charged water drop whose radius is $0.1\,\mu m$ is in equilibrium in an electric field. If charge on it is equal to charge of an electron, then intensity of electric field will be.......$N/C$ $(g = 10\,m{s^{ - 1}})$