બે પાતળી વિધુતભારિત સમતલ સપાટીની $\sigma_{+}$ પુષ્ઠ ધનતા અને $\sigma_{-}$ છે. જયા $\left|\sigma_{+}\right|>\left|\sigma_{-}\right|$ બંને સમતલ લંબ છેદે છે. તો તંત્રની વિધુતક્ષેત્ર રેખાનું નિરૂપણ
આકૃતિમાં દર્શાવ્યા મુજબ $'q'$ વિજભાર ને સમઘનનાં એક ખૂણા પર ગોઠવવામાં આવ્યો છે. આચ્છાદિત ક્ષેત્રફળમાંથી પસાર થતાં સ્થિત વીજ ક્ષેત્ર $\overrightarrow{ E }$ નું ફ્લક્સ ...... હશે.
સાચું વિધાન પસંદ કરો.
$(1)$ બળ રેખા પરના કોઈ પણ બિંદુ આગળ દોરેલો સ્પર્શક એ આપેલ બિંદુ આગળ ધન વિદ્યુતભાર પર લાગતા બળની દિશા આપે છે.
$(2)$ બળ રેખા પરના કોઈ પણ બિંદુ આગળ દોરેલ લંબ એ આપેલ બિંદુ આગળ ધન વિદ્યુતભાર પર લાગતા બળની દિશા આપે છે.
$(3)$ બળની વિદ્યુત રેખાઓ ઋણ વિદ્યુતભાર થી શરૂ કરીને ધન વિદ્યુતભાર પર પૂર્ણ થાય છે.
$(4)$ બળની વિદ્યુત રેખાઓ ધન વિદ્યુતભાર થી શરૂ કરીને ઋણ વિદ્યુતભાર પર પૂર્ણ થાય છે.
એક બ્લેક બૉક્સની સપાટી આગળના વિદ્યુતક્ષેત્રની કાળજીપૂર્વકની માપણી દર્શાવે છે કે બૉક્સની સપાટીમાંથી બહારની તરફનું કુલ ફલક્સ $8.0 \times 10^{3} \;N\,m ^{2} / C$ છે.
$(a)$ બૉક્સની અંદરનો કુલ વિદ્યુતભાર કેટલો હશે? $(b)$ જો બૉક્સની સપાટીમાંથી બહારની તરફનું કુલ $(Net)$ ફલક્સ શૂન્ય હોત તો તમે એવો નિષ્કર્ષ તારવી શક્યા હોત કે બૉક્સમાં કોઈ વિદ્યુતભાર નથી? આવું હોય તો કેમ અથવા ન હોય તો પણ કેમ?
ધન વિદ્યુતભારની ક્ષેત્રરેખાઓ દોરો.
વિદ્યુત ફલક્સનો $\mathrm{SI}$ એકમ લખો.