Two charges of equal magnitudes and at a distance $r$ exert a force $F$ on each other. If the charges are halved and distance between them is doubled, then the new force acting on each charge is
$F / 8$
$F / 4$
$4 F$
$F / 16$
As shown in the figure. a configuration of two equal point charges $\left( q _0=+2 \mu C \right)$ is placed on an inclined plane. Mass of each point charge is $20\,g$. Assume that there is no friction between charge and plane. For the system of two point charges to be in equilibrium (at rest) the height $h = x \times 10^{-3}\,m$ The value of $x$ is $..........$.(Take $\left.\frac{1}{4 \pi \varepsilon_0}=9 \times 10^9\,Nm ^2 C ^{-2}, g=10\,ms ^{-1}\right)$
Two identical conducting spheres with negligible volume have $2.1\, nC$ and $-0.1\, nC$ charges, respectively. They are brought into contact and then separated by a distance of $0.5 \,m$. The electrostatic force acting between the spheres is $.......... \, \times 10^{-9} \,N$
[Given : $4 \pi \varepsilon_{0}=\frac{1}{9 \times 10^{9}} SI$ unit]
In general, metallic ropes are suspended on the carriers which take inflammable material. The reason is
Force between two identical spheres charged with same charge is $F$. If $75\%$ charge of one sphere is transfered to the other sphere then the new force will be
Four charges are placed at the circumference of the dial of a clock as shown in figure. If the clock has only hour hand, then the resultant force on a positive charge $q_0$ placed at the centre, points in the direction which shows the time as