वायु में रखे दो आवेश एक दूसरे को ${10^{ - 4}}\,N$ से प्रतिकर्षित करते हैं। दोनों आवेशों के मध्य तेल भर दिया जाये तो बल $2.5 \times {10^{ - 5}}\,N$ हो जाता है तो तेल का परावैद्युतांक होगा
$2.5$
$0.25$
$2$
$4$
$4\,\mu\,C$ के किसी आवेश को, दो आवेशों में विभाजित किया जाता है। विभाजित आवेशों के बीच की दूरी नियत है। यदि उनके बीच में अधिकतम बल लग रहा है, तो विभाजित आवेशों का परिमाण होगा :
$10^{-4}$ मी. $^2$ अनुप्रस्थ परिच्छेद क्षेत्रफल वाले एक धातु के पतले तार का प्रयोग करके $30$ सेमी. त्रिज्या का एक छल्ला (रिंग) बनाया गया है। $2 \pi \mathrm{C}$ के एक धन आवेश को छल्ले पर एक समान रूप से वितरित किया गया है तथा $30 \mathrm{pC}$ का दूसरा धन आवेश छल्ले के केन्द्र पर रखा गया है। छल्ले में तनाव . . . . . . .${N}$ है जबकि छल्ले का आकार अपरिवर्तित रहता है।
(गुरूत्व का प्रभाव नगण्य मान कर)
(यदि, $\frac{1}{4 \pi \epsilon_0}=9 \times 10^9 \mathrm{SI}$ मात्रक)
$1\,\mu C$ के अनन्त आवेश $x$-अक्ष पर $x = 1, 2, 4, 8, ....\infty$ स्थितियों पर रखे हैं। यदि $1\,C$ का आवेश मूल बिन्दु पर स्थित हो तो इस पर आरोपित कुल बल.....$N$ होगा
चित्र में दिखाए अनुसार धनात्मक बिंदु आवेशों को एक तारा-आकार के शीर्षों पर रखा जाता है। तारे के केंद्र $O$ पर स्थित एक ॠणात्मक बिंदु आवेश पर स्थिर वैद्युत बल की दिशा क्या होगी ?
तीन आवेश प्रत्येक $q$ समबाहु त्रिभुज के शीर्षों पर रखे हैं। केन्द्र पर रखे आवेश समान आवेश $'q'$ पर विद्युत बल होगा (त्रिभुज की प्रत्येक भुजा $L$ है)