Two coils are placed close to each other. The mutual inductance of the pair of coils depends upon
The currents in the two coils
The rates at which currents are changing in the two coils
Relative position and orientation of the two coils
The materials of the wires of the coils
Two coils have a mutual inductance $0.005\,H$ . The current changes in the first coil The current changes in the first coil according to the equation $I = I_0 sin\,\omega t$ , where $I_0 = 10\,A$ and $\omega = 100\pi \,rad/s$ . The maximum value of $emf$ in the second coil will be
Two circular coils have their centres at the same point. The mutual inductance between them will be maximum when their axes
There are $10$ turns in coil $M$ and $15$ turns in coil $N$ . If a current of $2\ A$ is passed through coil $M$ then the flux linked with coil $N$ is $1.8 × 10^{-3}\ Wb$ . If a current of $3\ A$ is passed through coil $N$ then flux linked with coil $M$ is
In a transformer, the coefficient of mutual inductance between the primary and the secondary coil is $0.2 \,henry$. When the current changes by $5$ $ampere/second$ in the primary, the induced $e.m.f$. in the secondary will be......$V$
Two conducting circular loops of radii $R_1$ and $R_2$ are placed in the same plane with their centre coinciding. If $R_1 >> R_2$ the mutual inductance $M$ between them will be directly proportional to