Two dice are thrown independently. Let $A$ be the event that the number appeared on the $1^{\text {st }}$ die is less than the number appeared on the $2^{\text {nd }}$ die, $B$ be the event that the number appeared on the $1^{\text {st }}$ die is even and that on the second die is odd, and $C$ be the event that the number appeared on the $1^{\text {st }}$ die is odd and that on the $2^{\text {nd }}$ is even. Then

  • [JEE MAIN 2023]
  • A

    the number of favourable cases of the event $(A \cup B) \cap C$ is $6$

  • B

    $A$ and $B$ are mutually exchusive

  • C

    The number of favourable cases of the events $A , B$ and $C$ are $15,6$ and $6$ respectively

  • D

    $B$ and $C$ are independent

Similar Questions

Suppose that $A, B, C$ are events such that $P\,(A) = P\,(B) = P\,(C) = \frac{1}{4},\,P\,(AB) = P\,(CB) = 0,\,P\,(AC) = \frac{1}{8},$ then $P\,(A + B) = $

An event has odds in favour $4 : 5$, then the probability that event occurs, is

$A$ and $B$ are two events such that $P(A)=0.54$, $P(B)=0.69$ and $P(A \cap B)=0.35.$ Find  $P \left( A ^{\prime} \cap B ^{\prime}\right)$.

The probability that $A$ speaks truth is $\frac{4}{5}$, while this probability for $B$ is $\frac{3}{4}$. The probability that they contradict each other when asked to speak on a fact

  • [AIEEE 2004]

Fill in the blanks in following table :

$P(A)$ $P(B)$ $P(A \cap B)$ $P (A \cup B)$
$0.35$  ........... $0.25$  $0.6$