Two dice are thrown simultaneously. The probability that sum is odd or less than $7$ or both, is

  • A

    $\frac{2}{3}$

  • B

    $\frac{1}{2}$

  • C

    $\frac{3}{4}$

  • D

    $\frac{1}{3}$

Similar Questions

Given that the events $A$ and $B$ are such that $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ and $P(B)=p .$ Find $p$ if they are independent.

Let $X$ and $Y$ are two events such that $P(X \cup Y=P)\,(X \cap Y).$

Statement $1:$ $P(X \cap Y' = P)\,(X' \cap Y = 0).$

Statement $2:$ $P(X) + P(Y = 2)\,P\,(X \cap Y)$

  • [AIEEE 2012]

For an event, odds against is $6 : 5$. The probability that event does not occur, is

An unbiased coin is tossed. If the outcome is a head then a pair of unbiased dice is rolled and the sum of the numbers obtained on the is noted. If the toss of the coin results in tail then a card from a well-shuffled pack of nine cards numbered $1, 2, 3,….., 9$ is randomly picked and the number on the card is noted. The probability that the noted number is either $7$ or $8$ is

  • [JEE MAIN 2019]

Given two mutually exclusive events $A$ and $B$ such that $P(A) = 0.45$ and $P(B) = 0.35,$ then $P (A$ or $B ) =$