Let $A$ and $B$ be independent events such that $\mathrm{P}(\mathrm{A})=\mathrm{p}, \mathrm{P}(\mathrm{B})=2 \mathrm{p} .$ The largest value of $\mathrm{p}$, for which $\mathrm{P}$ (exactly one of $\mathrm{A}, \mathrm{B}$ occurs $)=\frac{5}{9}$, is :

  • [JEE MAIN 2021]
  • A

    $\frac{1}{3}$

  • B

    $\frac{2}{9}$

  • C

    $\frac{4}{9}$

  • D

    $\frac{5}{12}$

Similar Questions

If $A$ and $B$ are two events such that $P\,(A \cup B) = P\,(A \cap B),$ then the true relation is

  • [IIT 1998]

$A$ and $B$ are two events such that $P(A)=0.54$, $P(B)=0.69$ and $P(A \cap B)=0.35.$ Find $P \left( B \cap A ^{\prime}\right)$.

If $A$ and $B$ are any two events, then the probability that exactly one of them occur is

  • [IIT 1984]

The probabilities that $A$ and $B$ will die within a year are $p$ and $q$ respectively, then the probability that only one of them will be alive at the end of the year is

$A$ and $B$ are two events such that $P(A)=0.54$, $P(B)=0.69$ and $P(A \cap B)=0.35.$ Find  $P \left( A ^{\prime} \cap B ^{\prime}\right)$.